翻訳と辞書
Words near each other
・ Diriangen
・ Diriangén FC
・ Diriba Kuma
・ Diribitorium
・ Dirichlet (crater)
・ Dirichlet algebra
・ Dirichlet beta function
・ Dirichlet boundary condition
・ Dirichlet character
・ Dirichlet conditions
・ Dirichlet convolution
・ Dirichlet density
・ Dirichlet distribution
・ Dirichlet eigenvalue
・ Dirichlet eta function
Dirichlet form
・ Dirichlet integral
・ Dirichlet kernel
・ Dirichlet L-function
・ Dirichlet problem
・ Dirichlet process
・ Dirichlet series
・ Dirichlet space
・ Dirichlet's approximation theorem
・ Dirichlet's energy
・ Dirichlet's principle
・ Dirichlet's test
・ Dirichlet's theorem
・ Dirichlet's theorem on arithmetic progressions
・ Dirichlet's unit theorem


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Dirichlet form : ウィキペディア英語版
Dirichlet form

In the branch of mathematics known as potential theory, a Dirichlet form is a generalization of the Laplacian that can be defined on any measure space, without the need for mentioning partial derivatives. This allows mathematicians to study the Laplace equation and heat equation on spaces that are not manifolds: for example, fractals. To accomplish this generalization, one focuses not on the Laplacian itself but on the quantity
:\mathcal(u) = \int_ |\nabla u|^2\;dx
that is minimized when the Laplacian vanishes.

Technically, a Dirichlet form is a Markovian closed symmetric form on an ''L''2-space.〔Fukushima, M, Oshima, Y., & Takeda, M. (1994). ''Dirichlet forms and symmetric Markov processes.'' Walter de Gruyter & Co , ISBN 3-11-011626-X〕 Such objects are studied in abstract potential theory, based on the classical Dirichlet's principle. The theory of Dirichlet forms originated in the work of on Dirichlet spaces.
A Dirichlet form on a measure space (X, \mu) is a bilinear function
:\mathcal: D\times D \to \mathbb
such that
1) The domain D is a dense subset of L^2(X, \mu)
2) \mathcal is symmetric, that is \mathcal(u,v)=\mathcal(v,u) for any u,v \in D.
3) \mathcal(u,u) \geq 0 for any u \in D.
4) The set D equipped with the inner product defined by (u,v)_ + \mathcal(u,v) is a real Hilbert space.
5) For any u \in D we have that u_
* = \min (\max(u, 0) , 1) \in D and \mathcal(u_
*,u_
*)\leq \mathcal(u,u)
In other words, a Dirichlet form is nothing but a positive symmetric bilinear form defined on a dense subset of L^2(X, \mu) such that 4) and 5) hold.
Alternatively, the quadratic form u \to \mathcal(u,u) itself is known as the Dirichlet form and it is still denoted by \mathcal,
so \mathcal(u):=\mathcal(u,u).
The best known Dirichlet form is the Dirichlet energy of functions on \mathbb^n
:\mathcal(u) = \int_ |\nabla u|^2\;dx
which gives rise to the space H^1(\mathbb^n). Another example of a Dirichlet form is given by
:\mathcal(u) = \iint_^n} (u(y)-u(x))^2 k(x,y)\, \mathrmx \mathrm y
where k:\mathbb R^n\times \mathbb R^n\to \mathbb R is some non-negative symmetric integral kernel.
If the kernel k satisfies the bound k(x,y) \leq \Lambda |x-y|^, then the quadratic form is bounded in \dot H^.
If moreover, \lambda |x-y|^ \leq k(x,y), then the form is comparable to the norm in \dot H^ squared and in that case the set
D \subset L^2(\mathbb^n) defined above is given by H^(\mathbb^n). Thus Dirichlet forms are natural generalizations of the Dirichlet integrals
:\mathcal(u) = \int (A\nabla u,\nabla u)\; \mathrm x,
where A(x) is a positive symmetric matrix. The Euler-Lagrange equation of a Dirichlet form is a non-local analogue of an elliptic equations in divergence form. Equations of this type are studied using variational methods and they are expected to satisfy similar properties.〔〔〔
== References ==

*
*
*
*.
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Dirichlet form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.